Originally posted on PubMed.
Abstract
Extended community testing constitutes one of the main strategic pillars in controlling the COVID-19 pandemic. Reverse transcription PCR (RT-PCR) targeting the SARS-CoV-2 genome on nasopharyngeal swab samples is currently the reference test. While displaying excellent analytical sensitivity and specificity, this test is costly, often requires a substantial turnaround time, and, more importantly, is subject to reagent and other material shortages. To complement this technology, rapid antigen tests have been developed and made available worldwide, allowing cheap, quick, and decentralized SARS-CoV-2 testing. The main drawback of these tests is the reduced sensitivity when RT-PCR is the gold standard. In this study, we evaluate Visby an innovative, portable, easy-to-use RT-PCR point-of-care (POC) diagnostic device. Our retrospective analysis shows that overall, compared to the Cobas 6800 RT-qPCR assay (Roche), this RT-PCR POC technology detects SARS-CoV-2 RNA with 95% sensitivity (95%CI = 86.3-99%) and 100% specificity (95% CI = 80.5-100%). For samples with cycle-threshold values below 31, we observed 100% sensitivity (95% CI = 66.4-100%). While showing an analytical sensitivity slightly below that of a standard RT-qPCR system, the evaluated Visby RT-PCR POC device may prove to be an interesting diagnostic alternative in the COVID-19 pandemic, potentially combining the practical advantages of rapid antigen tests and the robust analytical performances of nucleic acid detection systems.